RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

FIRST YEAR [BATCH 2017-20]

B.A./B.Sc. SECOND SEMESTER (January – June) 2018 Mid-Semester Examination, March 2018

ate: 14/03/2018 MATHEMATICS (Honours)

Time: 11 am – 1 pm Paper: II Full Marks: 50

[Use a separate Answer Book for each group]

Group - A

[12 marks]

1. Answer **any three** questions :

 $[3\times4]$

- a) Find the remainder when $x^4 3x^3 + 2x^2 + x 1$ is divided by $x^2 4x + 3$.
- b) Let f(x) be a polynomial with real co-efficients having a root $\alpha + i\beta$ where α, β are real. Show that $\alpha i\beta$ is also a root of f(x).
- c) State Descartes' rule of signs. Apply this rule to find the nature of the roots of the equation $x^4 + 2x^2 + 3x 1 = 0$.
- d) Solve: $x^4 2x^3 + 4x^2 + 6x 21 = 0$, given that the sum of two of the roots is zero.
- e) Solve: $x^3 + 6x^2 + 11x + 6 = 0$, given that the roots are in arithmetic progression.

Group - B

[13 marks]

2. Answer **any one** question:

 $[1\times4]$

a) Let $f:(0,1] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 0, & \text{if } x \in (0,1] \cap \mathbb{Q}^C \\ \frac{1}{q}, & \text{if } x \in (0,1] \cap \mathbb{Q} \text{ with } x = \frac{p}{q}, \ p,q \in \mathbb{Z}, q > 0 \text{ and } \gcd(p,q) = 1 \end{cases}$$

Find all the points of continuity of f.

b) Let $f:[0,1] \to \mathbb{R}$ be a continuous map such that f(0) < 0 and f(1) > 0. Show that \exists a point $c \in (0,1)$ such that f(c) = 0.

3. Answer **any three** questions:

 $[3\times3]$

[1]

- a) If $\sum u_n$ be a convergent series of positive real numbers and $\{u_n\}$ is a monotone decreasing sequence. Prove that $\lim_{n\to\infty} nu_n = 0$. Is the converse of the above statement true? Discuss it with the help of a example.
- b) Examine the convergence of the series $\sum a_n$ where $a_n = n^p \left\{ \frac{1}{\sqrt{n-1}} \frac{1}{\sqrt{n}} \right\}$ for n > 1. [3]
- c) i) Prove that the following series is convergent: $1 \frac{1}{2} \left(1 + \frac{1}{3} \right) + \frac{1}{3} \left(1 + \frac{1}{3} + \frac{1}{5} \right) \dots$ [2]
 - ii) If $\{a_n\}$ be a sequence such that $\lim_{n\to\infty}(n^2a_n)$ exists in $\mathbb R$. Show that $\sum a_n$ is absolutely convergent.

- d) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^5 + 4x + 1$, $x \in \mathbb{R}$
 - Show that f has an inverse function g which is differentiable on \mathbb{R} . [1]
 - ii) Find g'(1), g'(6). [2]
- e) Let, I = [a,b] and $f: I \to \mathbb{R}$ be differentiable on I. If $f'(a) \cdot f'(b) < 0$, prove that there exist a point $C \in (a, b)$ such that f'(C) = 0. [3]

Group - C [10 marks]

- If A be a skew symmetric matrix of order n and P be an $n \times 1$ matrix, prove that $P^{t}AP = 0$. [2] 4.
- Answer any two questions: $[2\times4]$ 5.
 - a) If $A = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 0 \end{pmatrix}$, show that $A^3 6A 9I_3 = 0$. Hence obtain a matrix B such that $BA = I_3$.
 - b) Show that $\begin{vmatrix} 1+a_1 & 1 & 1 & 1 \\ 1 & 1+a_2 & 1 & 1 \\ 1 & 1 & 1+a_3 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1+a_3 & 1 \end{vmatrix} = a_1 a_2 a_3 a_4 \left(1 + \frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \frac{1}{a_4} \right).$
 - c) Find the matrix A if adj $A = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 5 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ and det A = 2.

Group – D [15 marks]

(Answer any one question)
$$[1 \times 15]$$

- If the L.P.P Maximize z = cx, $x \ge 0$ subject to Ax = b admits of an optimal solution then prove 6. that the optimal solution will coincide with at least one B.F.S. [7]
 - b) $x_1 = 1$, $x_2 = 1$, $x_3 = 1$ and $x_4 = 0$ is a F.S of the system of equations

$$x_1 + 2x_2 + 4x_3 + x_4 = 7$$
$$2x_1 - x_2 + 3x_3 - 2x_4 = 4$$

Reduce the F.S. to two different B.F.S.

- [4] c) Prove that the set of all convex combinations of a finite number of points is a convex set.
- [4]

a) Use Big-M method to maximize $z = 6x_1 + 4x_2$ subject to $2x_1 + 3x_2 \le 30$, $3x_1 + 2x_2 \le 24$, 7. $x_1 + x_2 \ge 3$, $x_1 \ge 0$, $x_2 \ge 0$. Show that the solution is not unique. Find two solutions. [7]

- b) Prove that every extreme point of the convex set of all feasible solutions of Ax = b, $x \ge 0$ corresponds to a B.F.S. [5]
- c) Find all the basic solutions of the equations

$$x_1 + x_2 + x_3 = 4 2x_1 + 5x_2 - 2x_3 = 3.$$
 [3]